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Who is Carleton?

• Computer Science / Optimization Algorithms 
• Los Alamos National Laboratory 
• Ph.D. Advisor Pascal Van Hentenryck 

• Optimization Generalist 
• Math-heuristics 

• Power System Expertise 
• Convex Power Flow Relaxations (QC formulation) 
• Power Flow Approximations (LPAC formulation) 
• NESTA / PGLib AC-OPF Benchmarking Datasets 
• PowerModels.jl (similar to Matpower, in Julia)
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What is Moore’s Law

https://commons.wikimedia.org/wiki/File:Moore%27s_Law_Transistor_Count_1971-2016.png

Shrinking transistors have powered 50 years of advances in computing.



The Bad News

https://www.technologyreview.com/s/601441/moores-law-is-dead-now-what/

https://www.technologyreview.com/s/600716/intel-chips-will-have-to-sacrifice-speed-gains-for-energy-savings/

Moore’s Law is Dead!  Now What?

Intel has suggested silicon transistors can  
only keep shrinking for another five years. (2016)

2/9/2019 Intel: Chips Will Have to Sacrifice Speed Gains for Energy Savings - MIT Technology Review

https://www.technologyreview.com/s/600716/intel-chips-will-have-to-sacrifice-speed-gains-for-energy-savings/ 1/2
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Universal / Gate-Based Quantium Computers



Adiabatic Quantium Computers



Neuromorphic Coprocessors

IBM True North Intel Loihi



Digital Annealers

http://www.fujitsu.com/global/digitalannealer/



Optical Parametric Oscillators

https://www.labs.hpe.com/next-next/light

Close-up view of a complex optical circuit  
created by Hewlett Packard Labs.



Memristor Networks

Folie 8 Dirk Wouters ESA WS April 2015 

Pinched hysteresis loop 
 v = M(x).i Æ i=0 Æ v=0 : zero crossing  

“if it’s pinched, it’s a memristor” (L.Chua) 



The Good News

xi =
�i + 1

2

�i = 2xi � 1

min :
X

i,j2E
cijxixj +
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i2N
cixi
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E ✓ C12

QUBO
min :
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�i 2 {�1, 1} 8i 2 N
E ✓ C12

Ising

https://arxiv.org/pdf/1707.00355.pdf

Ising Processing Units: 
Potential and Challenges for Discrete Optimization

https://arxiv.org/pdf/1707.00355.pdf


Los Alamos National Laboratory

The Ambition of Novel Computing

Computational Supremacy
“[Can a novel computing device] perform a well-defined computational 
task beyond the capabilities of state-of-the-art classical computers” 
Boixo et. al.

https://arxiv.org/pdf/1608.00263.pdf

https://ai.googleblog.com/2018/05/the-question-of-quantum-supremacy.html

NOTE: Initial computational tasks are likely to be very contrived!



Los Alamos National Laboratory

The State of Novel Computing

UNIVAC 1960
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The State of Novel Computing

What does it compute?

How fast does it compute? 
(esp. compared to state-of-the-art)



Overview

• My experience trying to make sense of 
a D-Wave Quantum Annealer 

• What does it compute? 

• Benchmarking Successes and Failures 

• Future Outlooks

min :
X
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i2N
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E ✓ C12

Ising
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What does a D-Wave Compute?



The User Perspective

min :
X

i,j2E
cij�i�j +

X

i2N
ci�i

s.t.

�i 2 {�1, 1} 8i 2 N
E ✓ C12

Ising Model  
Specification

D-Wave

Runtime Parameters 
(e.g. # of replicates)

Variable 
Assignments

count �1 �2 . . . �n

342 -1 1 . . . 1
173 1 -1 . . . -1
12 1 1 . . . -1
. . . . . . . . . . . . . . .
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Ground Truth…



First Order Approximation

• Finds globally optimal solutions to the Ising Model,

min :
X

i,j2E
cij�i�j +

X

i2N
ci�i

s.t.

�i 2 {�1, 1} 8i 2 N
E ✓ C12

So what?

WOW!

Max-Cut

min :
X

i,j2E

�i�j � 1

2

s.t.

�i 2 {�1, 1} 8i 2 N
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Let’s Go!

http://biqmac.uni-klu.ac.at/biqmaclib.html

2/9/2019 Biq Mac Library - BInary Quadratic and MAx Cut Library

http://biqmac.uni-klu.ac.at/biqmaclib.html 1/4

Biq Mac Library - Binary quadratic and Max cut
Library
This site offers a collection of Max-Cut instances and quadratic 0-1 programming problems of medium size.
Most of the instances were collected while developing Biq Mac, an SDP based Branch & Bound code (see
[RRW07] or [Wie06]). The dimension of the problems (i.e., number of variables or number of vertices in the
graph) ranges from 20 to 500. The instances are mainly ment to be used for testing exact solution methods for
quadratic 0-1 programming or Max-Cut problems.

Any comments or further instances to be added are welcome! Please contact angelika.wiegele@aau.at.

The structure of the directories is as follows:

                                  |--- beasley 
                     |---- Biq ---|--- gka 
                     |            |--- be 
                     | 
 Biq Mac  --- | 
                     |            |--- rudy 
                     |---- Mac ---| 
      |--- ising 
      

Here is a pdf-file (tex-file), describing all the datasets, giving the optimal values (or lower/upper bounds), and the
generators.

The overall collection: [tar.gz-file] (9.6 MB) [individual files]

Biq: min x'Qx s.t. x in {0,1}^n [tar.gz-file][individual files]
Matrix Q is assumed to be symmetric and indexed by the numbers from 1 up to n. Most of the instances can be
downloaded in two different versions, as matrix or list of matrix elements (sparse format). The .mat files are of
the form

      n 
      q_{1,1} q_{1,2} q_{1,3} ... q_{1,n} 
      q_{1,2} q_{2,2} q_{2,3} ... q_{2,n} 
      ... 
      q_{1,n} q_{2,n} q_{3,n} ... q_{n,n} 
    

The .sparse files are of the form

      n   m 
      i_1 j_1 q_{i_1,j_1} 
      i_2 j_2 q_{i_2,j_2} 
      ... 
      i_m j_m q_{i_m,j_m} 
    

where n is the number of variables and m the number of entries of Q specified in the subsequent list.  
Note that the beasley-datasets are available in sparse format only.

Beasley instances [sparse.tar.gz-file][individual files]

Some challenges…



Catch #1: Hardware Graph

DW2XC12

min :
X

i,j2E
cij�i�j +

X

i2N
ci�i

s.t.

�i 2 {�1, 1} 8i 2 N
E ✓ C12

|N |  1100

|E|  3068
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Catch #2: Coefficient Values

min :
X

i,j2E
cij�i�j +

X

i2N
ci�i

s.t.

�i 2 {�1, 1} 8i 2 N
E ✓ C12

cij 2{�1.00,�0.99,�0.98, . . . , 0.98, 0.99, 1.00} 8i, j 2 E
ci 2{�2.00,�1.99,�1.98, . . . , 1.98, 1.99, 2.00} 8i 2 N
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Catch #3: Graph Embedding

Source Graph Target Graph
qblib_3867



Catch #3: Graph Embedding

X1 S1

Source Graph Target Graph
only 6 
edges!



Catch #3: Graph Embedding

X1 S’1

Source Graph Target Graph

S1

chain
interactions

Warning: broken chains = infeasible solution



Typical D-Wave Algorithm

Problem Embedding

Send to QPU

Un-embedSolution

Warning!

Warning!



A Note on Other Technologies

cij 2{�1.00,�0.99,�0.98, . . . , 0.98, 0.99, 1.00} 8i, j 2 E
ci 2{�2.00,�1.99,�1.98, . . . , 1.98, 1.99, 2.00} 8i 2 N
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cij 2{�1, 0, 1} 8i, j 2 E
ci 2{�1, 0, 1} 8i 2 N
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Back to Benchmarking



Classic Operations Research Approach

• Choose a widely recognized benchmark library 
• QPLib 
• DIMACS Max-Clique Cases 

• Measure runtime against state-of-the-art alternatives 
• Complete Search (e.g. MIP) 
• Local Search Heuristics (e.g. HFS)

QPLIB
From Fields to Trees

Firas Hamze Nando de Freitas

Computer Science Department
University of British Columbia
{fhamze,nando}@cs.ubc.ca

Abstract

We present new MCMC algorithms for com-
puting the posterior distributions and expec-
tations of the unknown variables in undi-
rected graphical models with regular struc-
ture. For demonstration purposes, we fo-
cus on Markov Random Fields (MRFs). By
partitioning the MRFs into non-overlapping
trees, it is possible to compute the posterior
distribution of a particular tree exactly by
conditioning on the remaining tree. These
exact solutions allow us to construct effi-
cient blocked and Rao-Blackwellised MCMC
algorithms. We show empirically that tree
sampling is considerably more efficient than
other partitioned sampling schemes and the
naive Gibbs sampler, even in cases where
loopy belief propagation fails to converge.
We prove that tree sampling exhibits lower
variance than the naive Gibbs sampler and
other naive partitioning schemes using the
theoretical measure of maximal correlation.
We also construct new information theory
tools for comparing different MCMC schemes
and show that, under these, tree sampling is
more efficient.

1 INTRODUCTION

Rao-Blackwellised sampling is a powerful inference
tool for probabilistic graphical models (Doucet, de Fre-
itas, Murphy and Russell 2000, Paskin 2003, Bidyuk
and Dechter 2003). In this paper, we propose a new
Rao-Blackwellised MCMC algorithm for MRFs, which
is easily expandable to other models, such as condi-
tional random fields (Kumar and Hebert 2003, Mc-
Callum, Rohanimanesh and Sutton 2003). MRFs play
an important role in spatial statistics and computer
vision (Besag 1986, Besag 1974, Li 2001). Existing
MCMC algorithms for MRFs tend to be slow and
fail to exploit the structural properties of the MRF

Figure 1: At left, illustration of a partitioned MRF; nodes in the
shaded and white regions are ∆1, ∆2 respectively, with the small
black circles representing observations. At right, depiction of the
two-stage sampler; sampled values are large black circles. Condi-
tioned on ∆1, the variables in ∆2 form a tree. Using this two-stage
scheme, Rao-Blackwellised estimators are guaranteed to outperform
naive ones.

graphical model (Geman and Geman 1984, Swendsen
and Wang 1987). In contrast, variational approxima-
tion schemes (Yedidia, Freeman and Weiss 2000, Wain-
wright, Jaakkola and Willsky 2003) do exploit struc-
tural properties, but may often fail to converge.

The algorithm proposed in this paper exploits the
property that MRFs can be split into two disjoint
trees. By carrying out exact inference on each tree,
it is possible to sample half of the MRF nodes in a
single MCMC step. Our theorems will show that this
tree sampling method outperforms simpler MCMC
schemes. In particular, it exhibits lower correlation
between samples and a faster geometric convergence
rate. These theoretical results will be mirrored by our
numerical examples.

2 TREE SAMPLING FOR MRFS

2.1 MODEL SPECIFICATION

We specify the MRF distribution on a graph G(V , E),
with edges E and N nodes V as shown in Figure 1 left.
The clear nodes correspond to the unknown discrete
states x ∈ {1, . . . , nx}, while the attached black nodes
represent discrete observations y ∈ {1, . . . , nx} (they
could also be Gaussian). According to this graph, the

UAI 2004 HAMZE & FREITAS 243
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MIP-Based Ising Model Solver

Billionnet, Alain, and Sourour Elloumi. "Using a mixed integer quadratic programming solver for the 
unconstrained quadratic 0-1 problem." Mathematical Programming 109.1 (2007): 55-68.

min :
X

i,j2E
cij�i�j +

X

i2N
ci�i

s.t.

�i 2 {�1, 1} 8i 2 N
E ✓ C12

Ising Model 

min :
X

i,j2E
cijxixj +

X

i2N
cixi

s.t.

xi 2 {0, 1} 8i 2 N
E ✓ C12

QUBO Model ILP Model 

min :
X

i,j2E
cijxij +

X

i2N
cixi

s.t.

2xij � xi + xj 8i, j 2 E
xij  xi 8i, j 2 E
xij  xj 8i, j 2 E
xij 2 {0, 1} 8i, j 2 E
xi 2 {0, 1} 8i 2 N
E ✓ C12
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HFS Local Search Solver

Hamze-de Freitas-Selby (HFS)

https://github.com/alex1770/QUBO-Chimera
https://arxiv.org/pdf/1207.4149.pdf
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Computer Science Department
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Abstract

We present new MCMC algorithms for com-
puting the posterior distributions and expec-
tations of the unknown variables in undi-
rected graphical models with regular struc-
ture. For demonstration purposes, we fo-
cus on Markov Random Fields (MRFs). By
partitioning the MRFs into non-overlapping
trees, it is possible to compute the posterior
distribution of a particular tree exactly by
conditioning on the remaining tree. These
exact solutions allow us to construct effi-
cient blocked and Rao-Blackwellised MCMC
algorithms. We show empirically that tree
sampling is considerably more efficient than
other partitioned sampling schemes and the
naive Gibbs sampler, even in cases where
loopy belief propagation fails to converge.
We prove that tree sampling exhibits lower
variance than the naive Gibbs sampler and
other naive partitioning schemes using the
theoretical measure of maximal correlation.
We also construct new information theory
tools for comparing different MCMC schemes
and show that, under these, tree sampling is
more efficient.

1 INTRODUCTION

Rao-Blackwellised sampling is a powerful inference
tool for probabilistic graphical models (Doucet, de Fre-
itas, Murphy and Russell 2000, Paskin 2003, Bidyuk
and Dechter 2003). In this paper, we propose a new
Rao-Blackwellised MCMC algorithm for MRFs, which
is easily expandable to other models, such as condi-
tional random fields (Kumar and Hebert 2003, Mc-
Callum, Rohanimanesh and Sutton 2003). MRFs play
an important role in spatial statistics and computer
vision (Besag 1986, Besag 1974, Li 2001). Existing
MCMC algorithms for MRFs tend to be slow and
fail to exploit the structural properties of the MRF

Figure 1: At left, illustration of a partitioned MRF; nodes in the
shaded and white regions are ∆1, ∆2 respectively, with the small
black circles representing observations. At right, depiction of the
two-stage sampler; sampled values are large black circles. Condi-
tioned on ∆1, the variables in ∆2 form a tree. Using this two-stage
scheme, Rao-Blackwellised estimators are guaranteed to outperform
naive ones.

graphical model (Geman and Geman 1984, Swendsen
and Wang 1987). In contrast, variational approxima-
tion schemes (Yedidia, Freeman and Weiss 2000, Wain-
wright, Jaakkola and Willsky 2003) do exploit struc-
tural properties, but may often fail to converge.

The algorithm proposed in this paper exploits the
property that MRFs can be split into two disjoint
trees. By carrying out exact inference on each tree,
it is possible to sample half of the MRF nodes in a
single MCMC step. Our theorems will show that this
tree sampling method outperforms simpler MCMC
schemes. In particular, it exhibits lower correlation
between samples and a faster geometric convergence
rate. These theoretical results will be mirrored by our
numerical examples.

2 TREE SAMPLING FOR MRFS

2.1 MODEL SPECIFICATION

We specify the MRF distribution on a graph G(V , E),
with edges E and N nodes V as shown in Figure 1 left.
The clear nodes correspond to the unknown discrete
states x ∈ {1, . . . , nx}, while the attached black nodes
represent discrete observations y ∈ {1, . . . , nx} (they
could also be Gaussian). According to this graph, the
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Low Treewidth 
Subgraphs

Optimization Loop using DP

From Fields to Trees

Firas Hamze Nando de Freitas

Computer Science Department
University of British Columbia
{fhamze,nando}@cs.ubc.ca

Abstract

We present new MCMC algorithms for com-
puting the posterior distributions and expec-
tations of the unknown variables in undi-
rected graphical models with regular struc-
ture. For demonstration purposes, we fo-
cus on Markov Random Fields (MRFs). By
partitioning the MRFs into non-overlapping
trees, it is possible to compute the posterior
distribution of a particular tree exactly by
conditioning on the remaining tree. These
exact solutions allow us to construct effi-
cient blocked and Rao-Blackwellised MCMC
algorithms. We show empirically that tree
sampling is considerably more efficient than
other partitioned sampling schemes and the
naive Gibbs sampler, even in cases where
loopy belief propagation fails to converge.
We prove that tree sampling exhibits lower
variance than the naive Gibbs sampler and
other naive partitioning schemes using the
theoretical measure of maximal correlation.
We also construct new information theory
tools for comparing different MCMC schemes
and show that, under these, tree sampling is
more efficient.

1 INTRODUCTION

Rao-Blackwellised sampling is a powerful inference
tool for probabilistic graphical models (Doucet, de Fre-
itas, Murphy and Russell 2000, Paskin 2003, Bidyuk
and Dechter 2003). In this paper, we propose a new
Rao-Blackwellised MCMC algorithm for MRFs, which
is easily expandable to other models, such as condi-
tional random fields (Kumar and Hebert 2003, Mc-
Callum, Rohanimanesh and Sutton 2003). MRFs play
an important role in spatial statistics and computer
vision (Besag 1986, Besag 1974, Li 2001). Existing
MCMC algorithms for MRFs tend to be slow and
fail to exploit the structural properties of the MRF

Figure 1: At left, illustration of a partitioned MRF; nodes in the
shaded and white regions are ∆1, ∆2 respectively, with the small
black circles representing observations. At right, depiction of the
two-stage sampler; sampled values are large black circles. Condi-
tioned on ∆1, the variables in ∆2 form a tree. Using this two-stage
scheme, Rao-Blackwellised estimators are guaranteed to outperform
naive ones.

graphical model (Geman and Geman 1984, Swendsen
and Wang 1987). In contrast, variational approxima-
tion schemes (Yedidia, Freeman and Weiss 2000, Wain-
wright, Jaakkola and Willsky 2003) do exploit struc-
tural properties, but may often fail to converge.

The algorithm proposed in this paper exploits the
property that MRFs can be split into two disjoint
trees. By carrying out exact inference on each tree,
it is possible to sample half of the MRF nodes in a
single MCMC step. Our theorems will show that this
tree sampling method outperforms simpler MCMC
schemes. In particular, it exhibits lower correlation
between samples and a faster geometric convergence
rate. These theoretical results will be mirrored by our
numerical examples.

2 TREE SAMPLING FOR MRFS

2.1 MODEL SPECIFICATION

We specify the MRF distribution on a graph G(V , E),
with edges E and N nodes V as shown in Figure 1 left.
The clear nodes correspond to the unknown discrete
states x ∈ {1, . . . , nx}, while the attached black nodes
represent discrete observations y ∈ {1, . . . , nx} (they
could also be Gaussian). According to this graph, the
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highly optimized C code

https://github.com/alex1770/QUBO-Chimera
https://arxiv.org/pdf/1207.4149.pdf


Benchmark #1: QPLIB

QPLIB
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QUBO Model 



Benchmark #1: QPLIB

• 479 cases 
• -350 cases, no real or int 
• -87 cases, no constraints 
• -23 cases, edge bound 
• -2 cases, variable bound 
• 17 cases remain…

QPLIB



Benchmark #1: QPLIB

Table 1: Quality and Runtime Results on QPLib Cases.

gurobi dwave

Case |N | |E| Best Sol. Opt. Gap Time Best Sol. Best Inf. Samples Time

qplib 3876 28 48 -24 0% <1 -24 8574 352 10000 0+4

qplib 3607 66 120 -68 0% <1 -68 1720 4424 10000 1+4

qplib 5727 225 450 -15051133 0% <1 F.E. - - - T.L.

qplib 3756 153 288 -160 0% 1.2 -160 234 8451 10000 57+5

qplib 5755 400 800 -24838942 0% 1.5 F.E. - - - T.L.

qplib 3821 190 360 -192 0% 15 F.E. - - - T.L.

qplib 3565 276 528 -282 0% 93 F.E. - - - T.L.

qplib 3705 378 728 -384 0% 202 F.E. - - - T.L.

qplib 3745 325 624 -334 0% 753 F.E. - - - T.L.

qplib 3506 496 960 -478 1% T.L. F.E. - - - T.L.

qplib 3738 435 840 -422 1% T.L. F.E. - - - T.L.

qplib 3877 630 1224 -602 1% T.L. F.E. - - - T.L.

qplib 3706 703 1368 -682 2% T.L. F.E. - - - T.L.

qplib 3642 1035 2024 -1030 3% T.L. F.E. - - - T.L.

qplib 3650 946 1848 -918 3% T.L. F.E. - - - T.L.

qplib 5889 250 3045 -40358 15% T.L. F.E.
⇤

- - - T.L.

qplib 5909 250 3015 -33587 28% T.L. F.E.
⇤

- - - T.L.

T.L. - reached a time limit of 3600 seconds, F.E. - failed to embed in 3600

seconds, F.E.
⇤
- proved problem cannot be embedded on C12

F.E.  
Failed Embed

T.L.  
Time Limit 
(1 hour)



Benchmark #2: DIMACS Max-Clique

http://iridia.ulb.ac.be/~fmascia/maximum_clique/DIMACS-benchmark



Why Max-Clique?

• Formulate on the Compliment Graph 
• super sparse, i.e. easy to embed! 

• Combinatorial Problem 
• minimal issues due to coefficient accuracy 

• Easy to generate problems



Benchmark #2: DIMACS Max-Clique

Table 1: Quality and Runtime Results on Max Clique Cases.

gurobi dwave

Case |N | |E| Best Sol. Opt. Gap Time Best Sol. Best Inf. Samples Time

C015 9 15 12 -11 0% <1 -11 9073 1 10000 0+3

C020 9 20 17 -14 0% <1 -14 8370 85 10000 0+3

C030 9 30 44 -16 0% <1 -16 5651 123 10000 0+3

C040 9 40 77 -18 0% <1 -18 3865 316 10000 0+4

C050 9 50 108 -24 0% <1 -24 16 1254 10000 0+4

C060 9 60 158 -25 0% <1 -25 22 5465 10000 0+5

C070 9 70 215 -27 0% <1 -26 1 9855 10000 4+5

C080 9 80 306 -29 0% <1 F.E. - - - T.L.

C090 9 90 407 -29 0% 1.0 F.E. - - - T.L.

C100 9 100 508 -30 0% 2.0 F.E. - - - T.L.

C110 9 110 615 -32 0% 5.1 F.E. - - - T.L.

C120 9 120 729 -32 0% 45 F.E. - - - T.L.

C125 9 125 787 -34 0% 55 F.E. - - - T.L.

C250 9 250 3141 -43 40% T.L. F.E.
⇤

- - - T.L.

T.L. - reached a time limit of 3600 seconds, F.E. - failed to embed in 3600

seconds, F.E.
⇤
- proved problem cannot be embedded on C12

F.E.  
Failed  
Embed

T.L.  
Time  
Limit 

(1 hour)
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Benchmarking Stopgap

• Embedding real problems is just too difficult, at the moment.

DW2XC12

Classic 
Solvers

or-tools

…

Problem 
Generation



Benchmarking Tools

Your 
Problem

HFS

or-tools

BQPJSON

D-Wave 
Instance 

Generator 
(DWIG)

BQPSOLVERS

qbsolv

problem spec. glue code

https://github.com/lanl-ansi/dwig
https://github.com/lanl-ansi/bqpjson

Open Source Code

https://github.com/lanl-ansi/bqpsolvers



The Problem with Problem Generation

• Generating interesting problems can be very hard! 
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Abstract 

We report results from large-scale experiments in 
satisfiability testing. As has been observed by 
others, testing the satisfiability of random formu- 
las often appears surprisingly easy. Here we show 
that by using the right distribution of instances, 
and appropriate parameter values, it is possible 
to generate random formulas that are hard, that 
is, for which satisfiability testing is quite difficult. 
Our results provide a benchmark for the evalua- 
tion of satisfiability-testing procedures. 

Introduction 
Many computational tasks of interest to AI, to the ex- 
tent that they can be precisely characterized at all, 
can be shown to be NP-hard in their most general 
form. However, there is fundamental disagreement, at 

least within the AI community, about the implications 
of this. It is claimed on the one hand that since the 
performance of algorithms designed to solve NP-hard 
tasks degrades rapidly with small increases in input 
size, something will need to be given up to obtain ac- 
ceptable behavior. On the other hand, it is argued 
that this analysis is irrelevant to AI since it based on 
worst-case scenarios, and that what is really needed is 
a better understanding of how these procedures per- 
form “on average”. 

The first computational task shown to be NP-hard, 
by Cook (1971) was propositional satisfiability or 
SAT: given a formula of the propositional calculus, de- 
cide if there is an assignment to its variables that makes 
the formula true according to the usual rules of inter- 
pretation. Subsequent tasks have been shown to be 
NP-hard by proving they are at least as hard as SAT. 
Roughly, a task is NP-hard if a good algorithm for it 
would entail a good algorithm for SAT. Unlike many 
other NP-hard tasks (see Garey and Johnson (1979) for 
a catalogue), SAT is of special concern to AI because 
of its direct relationship to deductive reasoning (i.e., 

*Fellow of the Canadian Institute for Advanced Re- 
search, and E. W. R. Steacie Fellow of the Natural Sciences 
and Engineering Research Council of Canada 

Dept. of Computer Science 

University of Toron to 

Toronto, Canada M5S lA4 

hector8ai. toronto.edn 

given a collection of base facts C, a sentence cy may be 
deduced iff C U {lo} is not satisfiable). Many other 
forms of reasoning, including default reasoning, diag- 
nosis, planning and image interpretation, also make 

direct appeal to satisfiability. The fact that these usu- 
ally require much more than the propositional calculus 
simply highlights the fact that SAT is a fundamental 
task, and that developing SAT procedures that work 
well in AI applications is essential. 

We might ask when it is reasonable to use a sound 
and complete procedure for SAT, and when we should 
settle for something less. Do hard cases come up often, 
or are they always a result of strange encodings tailored 
for some specific purpose ? One difficulty in answering 
such questions is that there appear to be few applica 
ble analytical results on the expected difficulty of SAT 
(although see below). It seems that, at least for the 
time being, we must rely largely on empirical results. 

A number of papers (some discussed below) have 
claimed that the difficulty of SAT on randomly gen- 
erated problems is not so daunting. For example, an 
often-quoted result (Goldberg, 1979; Goldberg et al. 
1982) suggests that SAT can be readily solved “on av- 
erage” in 0(n2) time. This does not settle the question 
of how well the methods will work in practice, but at 
first blush it does appear to be more relevant to AI 
than contrived worst cases. 

The big problem is that to examine how well a pro- 
cedure does on average one must assume a distribution 
of instances. Indeed, as we will discuss below, Franc0 
and Paul1 (1983) refuted the Goldberg result by show- 
ing that it was a direct consequence of their choice of 
distribution. It’s not that Goldberg had a clever al- 
gorithm, or that the problem is easy, but that they 
had used a distribution with a preponderance of easy 
instances. That is, from the space of all problem in- 
stances, they sampled in a way that produced almost 
no hard cases. 

Nevertheless, papers continue to appear purport- 
ing to empirically demonstrate the efficacy of some 
new procedure, but using just this distribution (e.g., 
Hooker, 1988; Kamath et al. 1990), or presenting data 
suggesting that very large satisfiability problems - 
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Figure 3: Median DP calls for 50-variable Random 3-SAT as a function of the ratio of clauses-to-variables. 
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Figure 4: Probability of satisfiability of 50-variable formulas, as a function of the ratio of clauses-to-variables. 

choosing which variable to guess in the “splitting” step 
of DP. In our implementation, we simply set variables 
in lexical order (except when there are unit clauses.) 
DP can be made faster by using clever selection strate- 
gies (e.g., Zabih and McAllester 1988), but it seems 
unlikely that such heuristics will qualitatively alter the 
easy-hard-easy pattern. The formulas in the hard area 
appear to be the most challenging for the strategies we 
have tested, and we conjecture that they will be for 
every (heuristic) method. 

The constant-probability model 

We now examine formulas generated using the 
constant-probability model. The model has three pa 

rameters: the number of variables N, and number of 
clauses L as before; but instead of a fixed clause length, 
clauses are generated by including a variable in a clause 
with some fixed probability P, and then negating it 
with probability 0.5. Large formulas generated this 
way very often have at least one empty clause and sev- 
eral unit clauses, so that they tend to be either triv- 
ially unsatisfiable, or easily shown satisfiable. Thus, 
the more interesting results are for the modified ver- 
sion in which empty and unit clauses are disallowed. 
This distribution we call Random P-SAT. 

Analytic results by Franc0 and Paul1 (1983) sug- 
gest that one probably cannot generate computation- 
ally challenging instances from this model, and our 
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Figure 2: Median number of recursive DP calls for Random S-SAT formulas, as a function of the ratio of clauses- 
torvariables. 

In figure 2, we see the following pattern: For formu- 
las that are either relatively short or relatively long, 
DP finishes quickly, but the formulas of medium length 
take much longer. Since formulas with few clauses 
are under-constrained and have many satisfying as- 
signments, an assignment is likely to be found early 
in the search. Formulas with very many clauses are 
over-constrained (and usually unsatisfiable), so con- 
tradictions are found easily, and a full search can be 
completed quickly. Finally, formulas in between are 
much harder because they have relatively few (if any) 
satisfying assignments, but the empty clause will only 
be generated after assigning values to many variables, 
resulting in a deep search tree. Similar under- and 
over-constrained areas have been found for random in- 
stances of other NP-complete problems (see the discus- 
sion of the work of Cheeseman et al. (1991), below). 

The curves in figure 2 are for ad1 formulas of a given 
size, that is they are composites of satisfiable and un- 
satisfiable subsets. In figure 3 the median number of 
calls for 50-variable formulas is factored into satisfiable 
and unsatisfiable cases, showing that the two sets are 
quite different. The extremely rare unsatisfiable short 
formulas are very hard, whereas the rare long satisfi- 
able formulas remain moderately difficult. Thus, the 

easy parts of the composite distribution appear to be a 
consequence of a relative abundance of short satisfiable 
formulas or long unsatisfiable ones. 

To understand the hard area in terms of the like- 
lihood of satisfiability, we experimentally determined 
the probability that a random 50-variable instance is 
satisfiable (figure 4). There is a remarkable correspon- 
dence between the peak on our recursive calls curve 
and the point where the probability that a formula is 
satisfiable is 0.5. The main empirical conclusion we 
draw from this is that the hardest urea for sutisfiubil- 
ity is near the point where 50% of the formulas are 
satisfiable. 

This “50% satisfiable” point seems to occur at a fixed 
ratio of the number of clauses to the number of vari- 
ables: when the number of clauses is about 4.3 times 
the number of variables. There is a boundary effect 
for small formulas: for formulas with 20 variables, the 
point occurs at 4.55; for 50 variables, at 4.3; and for 
140 variables, at 4.3. While we conjecture that this 
ratio approaches about 4.25 for very large numbers of 
variables, it remains a challenging open problem to un- 
ulyticully determine the “50% satisfiable” point as a 
function of the number of variables. 

Finally, note that we did not specify a method for 
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What Problems to Consider

• Try everything from the literature 

• RAN-k, RANF-k 
• https://arxiv.org/abs/1508.05087 

• Frustrated Loops 
• https://arxiv.org/abs/1508.05087 
• https://arxiv.org/abs/1701.04579 
• https://arxiv.org/abs/1703.00622 

• Weak-Strong Cluster Networks 
• https://arxiv.org/abs/1512.02206

https://arxiv.org/abs/1508.05087
https://arxiv.org/abs/1508.05087
https://arxiv.org/abs/1701.04579
https://arxiv.org/abs/1703.00622
https://arxiv.org/abs/1512.02206
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Problem Hardness
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Problem Hardness

RAN Steps vs Runtime
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Detailed Benchmarking Study
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Detailed Benchmarking Study

Run Time

Solution 
Cost

goal

Best Sol. Found (Upper Bound)

Opt. Proof

Lower Bound on Sol.
Time Limit (10m)

Opt. Gap {



Detailed Benchmarking Study (RAN-1, C5)
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Detailed Benchmarking Study (RAN-1, C5)
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Detailed Benchmarking Study (RAN-1, C12)
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Concluding Thoughts

xi =
�i + 1

2

�i = 2xi � 1

min :
X
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xi 2 {0, 1} 8i 2 N
E ✓ C12

QUBO
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E ✓ C12

Ising

https://arxiv.org/pdf/1707.00355.pdf

Ising Processing Units: 
Potential and Challenges for Discrete Optimization

https://arxiv.org/pdf/1707.00355.pdf


Concluding Thoughts

• Emerging computational hardware may fundamentally change 
optimization algorithm development 
• Ising Coprocessors are like ALUs or GPUs for optimization! 

• Based on initial benchmarking efforts D-Wave hardware is not 
outperforming state-of-the-art alternatives, but seems competitive 
• I believe we are on the cusp of a performance breakthrough 

• Watch out for other emerging hardware platforms!
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Thanks! 

Questions?


